证明:连接$BD。$
 $\because$在等边$\triangle ABC$中,$D$是$AC$的中点,
 $\therefore \angle DBC = \frac{1}{2}\angle ABC = \frac{1}{2} \times 60^\circ = 30^\circ,$$\angle ACB = 60^\circ。$
 $\because CD = CE,$
 $\therefore \angle CDE = \angle E。$
 $\because \angle ACB = \angle CDE + \angle E = 60^\circ,$
 $\therefore \angle E = 30^\circ。$
 $\therefore \angle DBC = \angle E = 30^\circ。$
 $\because DM \perp BC,$即$\angle DMB = \angle DME = 90^\circ,$
 在$\triangle BDM$和$\triangle EDM$中,
 $\begin{cases}\angle DBC = \angle E, \\DM = DM, \\\angle DMB = \angle DME,\end{cases}$
 $\therefore \triangle BDM \cong \triangle EDM (ASA)。$
 $\therefore BM = EM,$即$M$是$BE$的中点。