电子课本网 第57页

第57页

信息发布者:
解:原式$=(5xy-\frac{9}{4}xy-\frac{1}{4}xy)+(-\frac{9}{2}x^{3}y^{2}+\frac{1}{2}x^{3}y^{2})-x^{3}y$
$=(5 - \frac{9}{4}-\frac{1}{4})xy+(-\frac{9}{2}+\frac{1}{2})x^{3}y^{2}-x^{3}y$
$=\frac{5}{2}xy - 4x^{3}y^{2}-x^{3}y$
解:原式$=2(m - n)^{2}-(m - n)^{2}-(m - n)^{2}+(-1 + 4)(m - n)^{3}$
$=(2 - 1 - 1)(m - n)^{2}+3(m - n)^{3}$
$=3(m - n)^{3}$
解: $\begin{aligned}&3x^{2}y^{2}+2xy - 7x^{2}y^{2}-\frac{3}{2}xy + 2 + 4x^{2}y^{2}\\=&(3x^{2}y^{2}-7x^{2}y^{2}+4x^{2}y^{2})+(2xy-\frac{3}{2}xy)+2\\=&(3 - 7 + 4)x^{2}y^{2}+(2-\frac{3}{2})xy + 2\\=&\frac{1}{2}xy + 2\end{aligned}$ 当$x = 2$,$y=\frac{1}{4}$时, $\begin{aligned}&\frac{1}{2}×2×\frac{1}{4}+2\\=&\frac{1}{4}+2\\=&\frac{9}{4}\end{aligned}$
解:因为$3x^{a+1}y^{b-1}$与$\frac{2}{5}x^{2}y$是同类项,所以相同字母的指数相同,即$a + 1=2,$$b - 1=1。$解得$a=1,$$b=2。$
原式$2a^{2}b + 3a^{2}b-\frac{1}{2}a^{2}b,$合并同类项可得:
$\begin{aligned}&(2 + 3-\frac{1}{2})a^{2}b\\=&(5-\frac{1}{2})a^{2}b\\=&\frac{9}{2}a^{2}b\end{aligned}$
把$a = 1,$$b = 2$代入$\frac{9}{2}a^{2}b,$得:
$\frac{9}{2}\times1^{2}\times2=\frac{9}{2}\times1\times2 = 9$
所以,原式的值为$9。$
因为多项式不含$x^3$和$x^2$的项,所以$x^3$和$x^2$项的系数为$0。$
对于$x^3$项:$m - 2 = 0,$解得$m = 2。$
对于$x^2$项:$2(n + 1) = 0,$解得$n = -1。$
将$m = 2,$$n = -1$代入多项式,得:
$2x^4 + (2 - 2)x^3 + 2(-1 + 1)x^2 + 3x + \frac{-1}{2} = 2x^4 + 3x - \frac{1}{2}。$
当$x = -1$时,多项式的值为:
$2×(-1)^4 + 3×(-1) - \frac{1}{2} = 2×1 - 3 - \frac{1}{2} = 2 - 3 - \frac{1}{2} = -1 - \frac{1}{2} = -\frac{3}{2}。$
综上,这个多项式为$2x^4 + 3x - \frac{1}{2},$当$x = -1$时该多项式的值为$-\frac{3}{2}。$
解:对代数式$-5 + \frac{2}{3}x^2 - 3x + 4 + \frac{4}{3}x^2 + \frac{1}{2}x + 2 - 2x^2 + \frac{5}{2}x$进行化简:
$\begin{aligned}&(-5 + 4 + 2) + (\frac{2}{3}x^2 + \frac{4}{3}x^2 - 2x^2) + (-3x + \frac{1}{2}x + \frac{5}{2}x)\\=&1 + (\frac{6}{3}x^2 - 2x^2) + (-3x + 3x)\\=&1 + (2x^2 - 2x^2) + 0\\=&1\end{aligned}$
化简后的结果为$1,$不含有$x,$所以无论$x$取何值,代数式的值都为$1,$因此小明和小亮选择不同的$x$值代入计算,结果相同。
解:因为$(a + 1)^2 + |b - 2| = 0,$且$(a + 1)^2 \geq 0,$$|b - 2| \geq 0,$所以$a + 1 = 0,$$b - 2 = 0,$解得$a = -1,$$b = 2。$
对代数式$a^2b^2 + 3ab - 7a^2b^2 - \frac{5}{2}ab + 1 + 5a^2b^2$进行化简:
$\begin{aligned}&a^2b^2 + 3ab - 7a^2b^2 - \frac{5}{2}ab + 1 + 5a^2b^2\\=&(a^2b^2 - 7a^2b^2 + 5a^2b^2) + (3ab - \frac{5}{2}ab) + 1\\=&(-a^2b^2) + (\frac{6}{2}ab - \frac{5}{2}ab) + 1\\=&-a^2b^2 + \frac{1}{2}ab + 1\end{aligned}$
将$a = -1,$$b = 2$代入化简后的式子:
$\begin{aligned}&-(-1)^2 \times 2^2 + \frac{1}{2} \times (-1) \times 2 + 1\\=&-1 \times 4 + (-1) + 1\\=&-4 - 1 + 1\\=&-4\end{aligned}$
故代数式的值为$-4。$
解:
$\begin{aligned}&3x^{2}y^{2}+2xy - 7x^{2}y^{2}-\frac{3}{2}xy + 2 + 4x^{2}y^{2}\\=&(3x^{2}y^{2}-7x^{2}y^{2}+4x^{2}y^{2})+(2xy-\frac{3}{2}xy)+2\\=&(3 - 7 + 4)x^{2}y^{2}+(2-\frac{3}{2})xy + 2\\=&\frac{1}{2}xy + 2\end{aligned}$
$x = 2$$y=\frac{1}{4}$时,
$\begin{aligned}&\frac{1}{2}×2×\frac{1}{4}+2\\=&\frac{1}{4}+2\\=&\frac{9}{4}\end{aligned}$
所以,该代数式的值为$\frac{9}{4}$