因为多项式不含$x^3$和$x^2$的项,所以$x^3$和$x^2$项的系数为$0。$
对于$x^3$项:$m - 2 = 0,$解得$m = 2。$
对于$x^2$项:$2(n + 1) = 0,$解得$n = -1。$
将$m = 2,$$n = -1$代入多项式,得:
$2x^4 + (2 - 2)x^3 + 2(-1 + 1)x^2 + 3x + \frac{-1}{2} = 2x^4 + 3x - \frac{1}{2}。$
当$x = -1$时,多项式的值为:
$2×(-1)^4 + 3×(-1) - \frac{1}{2} = 2×1 - 3 - \frac{1}{2} = 2 - 3 - \frac{1}{2} = -1 - \frac{1}{2} = -\frac{3}{2}。$
综上,这个多项式为$2x^4 + 3x - \frac{1}{2},$当$x = -1$时该多项式的值为$-\frac{3}{2}。$